We've updated our
Privacy Policy effective December 15. Please read our updated Privacy Policy and tap

학습 가이드 > MATH 1314: College Algebra

Use Newton’s Law of Cooling

Exponential decay can also be applied to temperature. When a hot object is left in surrounding air that is at a lower temperature, the object’s temperature will decrease exponentially, leveling off as it approaches the surrounding air temperature. On a graph of the temperature function, the leveling off will correspond to a horizontal asymptote at the temperature of the surrounding air. Unless the room temperature is zero, this will correspond to a vertical shift of the generic exponential decay function. This translation leads to Newton’s Law of Cooling, the scientific formula for temperature as a function of time as an object’s temperature is equalized with the ambient temperature

T(t)=aekt+TsT\left(t\right)=a{e}^{kt}+{T}_{s}\\

This formula is derived as follows:

{T(t)=Abct+TsT(t)=Aeln(bct)+TsLaws of logarithms.T(t)=Aectlnb+TsLaws of logarithms.T(t)=Aekt+TsRename the constant clnb, calling it k.\begin{cases}T\left(t\right)=A{b}^{ct}+{T}_{s}\hfill & \hfill \\ T\left(t\right)=A{e}^{\mathrm{ln}\left({b}^{ct}\right)}+{T}_{s}\hfill & \text{Laws of logarithms}.\hfill \\ T\left(t\right)=A{e}^{ct\mathrm{ln}b}+{T}_{s}\hfill & \text{Laws of logarithms}.\hfill \\ T\left(t\right)=A{e}^{kt}+{T}_{s}\hfill & \text{Rename the constant }c \mathrm{ln} b,\text{ calling it }k.\hfill \end{cases}\\

A General Note: Newton’s Law of Cooling

The temperature of an object, T, in surrounding air with temperature Ts{T}_{s}\\ will behave according to the formula

T(t)=Aekt+TsT\left(t\right)=A{e}^{kt}+{T}_{s}\\
where
  • t is time
  • A is the difference between the initial temperature of the object and the surroundings
  • k is a constant, the continuous rate of cooling of the object

How To: Given a set of conditions, apply Newton’s Law of Cooling.

  1. Set Ts{T}_{s}\\ equal to the y-coordinate of the horizontal asymptote (usually the ambient temperature).
  2. Substitute the given values into the continuous growth formula T(t)=Aekt+TsT\left(t\right)=A{e}^{k}{}^{t}+{T}_{s}\\ to find the parameters A and k.
  3. Substitute in the desired time to find the temperature or the desired temperature to find the time.

Example 4: Using Newton’s Law of Cooling

A cheesecake is taken out of the oven with an ideal internal temperature of 165F165^\circ\text{F}\\, and is placed into a 35F35^\circ\text{F}\\ refrigerator. After 10 minutes, the cheesecake has cooled to 150F150^\circ\text{F}\\. If we must wait until the cheesecake has cooled to 70F70^\circ\text{F}\\ before we eat it, how long will we have to wait?

Solution

Because the surrounding air temperature in the refrigerator is 35 degrees, the cheesecake’s temperature will decay exponentially toward 35, following the equation

T(t)=Aekt+35T\left(t\right)=A{e}^{kt}+35\\

We know the initial temperature was 165, so T(0)=165T\left(0\right)=165\\.

{165=Aek0+35Substitute (0,165).A=130Solve for A.\begin{cases}165=A{e}^{k0}+35\hfill & \text{Substitute }\left(0,165\right).\hfill \\ A=130\hfill & \text{Solve for }A.\hfill \end{cases}\\

We were given another data point, T(10)=150T\left(10\right)=150\\, which we can use to solve for k.

{ 150=130ek10+35Substitute (10, 150). 115=130ek10Subtract 35. 115130=e10kDivide by 130. ln(115130)=10kTake the natural log of both sides. k=ln(115130)10=0.0123Divide by the coefficient of k.\begin{cases}\text{ }150=130{e}^{k10}+35\hfill & \text{Substitute (10, 150)}.\hfill \\ \text{ }115=130{e}^{k10}\hfill & \text{Subtract 35}.\hfill \\ \text{ }\frac{115}{130}={e}^{10k}\hfill & \text{Divide by 130}.\hfill \\ \text{ }\mathrm{ln}\left(\frac{115}{130}\right)=10k\hfill & \text{Take the natural log of both sides}.\hfill \\ \text{ }k=\frac{\mathrm{ln}\left(\frac{115}{130}\right)}{10}=-0.0123\hfill & \text{Divide by the coefficient of }k.\hfill \end{cases}\\

This gives us the equation for the cooling of the cheesecake: T(t)=130e0.0123t+35T\left(t\right)=130{e}^{-0.0123t}+35\\.

Now we can solve for the time it will take for the temperature to cool to 70 degrees.

{70=130e0.0123t+35Substitute in 70 for T(t).35=130e0.0123tSubtract 35.35130=e0.0123tDivide by 130.ln(35130)=0.0123tTake the natural log of both sidest=ln(35130)0.0123106.68Divide by the coefficient of t.\begin{cases}70=130{e}^{-0.0123t}+35\hfill & \text{Substitute in 70 for }T\left(t\right).\hfill \\ 35=130{e}^{-0.0123t}\hfill & \text{Subtract 35}.\hfill \\ \frac{35}{130}={e}^{-0.0123t}\hfill & \text{Divide by 130}.\hfill \\ \mathrm{ln}\left(\frac{35}{130}\right)=-0.0123t\hfill & \text{Take the natural log of both sides}\hfill \\ t=\frac{\mathrm{ln}\left(\frac{35}{130}\right)}{-0.0123}\approx 106.68\hfill & \text{Divide by the coefficient of }t.\hfill \end{cases}\\

It will take about 107 minutes, or one hour and 47 minutes, for the cheesecake to cool to 70F70^\circ\text{F}\\.

Try It 4

A pitcher of water at 40 degrees Fahrenheit is placed into a 70 degree room. One hour later, the temperature has risen to 45 degrees. How long will it take for the temperature to rise to 60 degrees?

Solution

Licenses & Attributions