프로로 업그레이드
사이트 계속하기
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
솔루션
적분 계산기
도함수 계산기
대수 계산기
행렬 계산기
더...
그래프 작성
선 그래프
지수 그래프
이차 그래프
사인 그래프
더...
계산기
BMI 계산기
복리 계산기
백분율 계산기
가속도 계산기
더...
기하학
피타고라스 정리 계산기
원 면적 계산기
이등변삼각형 계산기
삼각형 계산기
더...
도구
메모
무리
치트 시트
워크시트
학습 가이드
실행
솔루션 확인
ko
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
개선하다
일반적인 문제
토픽
사전 대수
대수학
단어 문제
Functions & Graphing
기하학
삼각법
프리 미적분학
미적분학
통계
일반적인 미적분학 문제
integral of 2/(x^3sqrt(x^4-25))
∫
2
x
3
√
x
4
−
2
5
dx
integral of 1/(x^3sqrt(x^2-4))
∫
1
x
3
√
x
2
−
4
dx
integral of 9x^2-30x+15
∫
9
x
2
−
3
0
x
+
1
5
dx
(\partial)/(\partial x)(x*sin(y-z))
∂
∂
x
(
x
·
sin
(
y
−
z
)
)
d/(dt)((\sqrt[3]{t})/5)
d
dt
(
3
√
t
5
)
(\partial)/(\partial x)(6-(x^2+y^2)^{1/5})
∂
∂
x
(
6
−
(
x
2
+
y
2
)
1
5
)
(\partial)/(\partial y)(x*e^{xy+1})
∂
∂
y
(
x
·
e
xy
+
1
)
derivative y=x^{-1}
derivative
y
=
x
−
1
y^'= 1/(xy)
y
′
=
1
xy
tangent f(x)=8x^2-3,\at x=3
tangent
f
(
x
)
=
8
x
2
−
3
,
at
x
=
3
derivative f(0)=(cos(x))/(x^2-1)
derivative
f
(
0
)
=
cos
(
x
)
x
2
−
1
integral from 1 to 4 of 7e^{sqrt(x)}
∫
1
4
7
e
√
x
dx
sum from n=1 to infinity of (2^n)/(10^n)
∑
n
=
1
∞
2
n
1
0
n
(\partial ^2)/(\partial y^2)(xy^{10}+x^2+y^4)
∂
2
∂
y
2
(
xy
1
0
+
x
2
+
y
4
)
derivative f(x)=x^{-1/2}+x^{1/2}
derivative
f
(
x
)
=
x
−
1
2
+
x
1
2
inverse라플라스 1/(s^3+s^2+s)
inverselaplace
1
s
3
+
s
2
+
s
derivative y=x^3-sqrt(x)
derivative
y
=
x
3
−
√
x
derivative f(x)=cos(sqrt(4t+12))
derivative
f
(
x
)
=
cos
(
√
4
t
+
1
2
)
limit as x approaches 0 of (y^{1-x})/(1-x)
lim
x
→
0
(
y
1
−
x
1
−
x
)
y^{''}-6y^'+2y=0,y(0)=0,y^'(0)=1
y
′
′
−
6
y
′
+
2
y
=
0
,
y
(
0
)
=
0
,
y
′
(
0
)
=
1
limit as x approaches 5 of sqrt(x^2+4)
lim
x
→
5
(
√
x
2
+
4
)
integral of (3x^2-3)/(x^3-3x)
∫
3
x
2
−
3
x
3
−
3
x
dx
3x(dy)/(dx)+5y=10
3
x
dy
dx
+
5
y
=
1
0
integral of tan^6(9x)sec^4(9x)
∫
tan
6
(
9
x
)
sec
4
(
9
x
)
dx
integral from 0 to 3 of pi(2sqrt(5y))^2
∫
0
3
π
(
2
√
5
y
)
2
dy
normal y=F4x-x^2,(1,3)
normal
y
=
F
4
x
−
x
2
,
(
1
,
3
)
integral of sin^3(1-2x)cos^3(1-2x)
∫
sin
3
(
1
−
2
x
)
cos
3
(
1
−
2
x
)
dx
derivative of 3x-4x^{9/10}
d
dx
(
3
x
−
4
x
9
1
0
)
derivative of 4cos^3(x)
d
dx
(
4
cos
3
(
x
)
)
tangent y=(9x^2-6x+2)(1+2x),\at x=1
tangent
y
=
(
9
x
2
−
6
x
+
2
)
(
1
+
2
x
)
,
at
x
=
1
derivative of asqrt(1+x)
d
dx
(
a
√
1
+
x
)
지역 sqrt(x)+9,0.25x+9
area
√
x
+
9
,
0
.
2
5
x
+
9
derivative of |3x-4|
d
dx
(
|
3
x
−
4
|
)
integral of (x^2)/(sqrt(10-3x^3))
∫
x
2
√
1
0
−
3
x
3
dx
integral of (90x^2sin(2+6x^3))
∫
(
9
0
x
2
sin
(
2
+
6
x
3
)
)
dx
derivative of sqrt((3x+7/(5+2x)))
d
dx
(
√
3
x
+
7
5
+
2
x
)
derivative of (ln(x+1)^2-e^{x^2})
d
dx
(
(
ln
(
x
+
1
)
)
2
−
e
x
2
)
integral of |4y+1|
∫
|
4
y
+
1
|
dy
y^'+7y=t+e^{-6t}
y
′
+
7
y
=
t
+
e
−
6
t
2xdx+dy=0
2
xdx
+
dy
=
0
sum from n=0 to infinity of 5(0.7)^{n-1}
∑
n
=
0
∞
5
(
0
.
7
)
n
−
1
integral of e^{4x}
∫
e
4
x
dx
integral of ((-1)^k)/((2k+1)!)(2x)^{2k}
∫
(
−
1
)
k
(
2
k
+
1
)
!
(
2
x
)
2
k
dx
(dx)/(dt)=x+t
dx
dt
=
x
+
t
derivative 3/(sqrt((45+36)^3))
derivative
3
√
(
4
5
+
3
6
)
3
derivative e^{x^7}
derivative
e
x
7
derivative of x 2/3
d
dx
(
x
2
3
)
integral of 1/(xsqrt(4x^2-9))
∫
1
x
√
4
x
2
−
9
dx
limit as x approaches 0 of (e^x-1)/(x^5)
lim
x
→
0
(
e
x
−
1
x
5
)
(\partial)/(\partial x)(ln(x^2+y^2+1))
∂
∂
x
(
ln
(
x
2
+
y
2
+
1
)
)
(\partial)/(\partial y)(ln(x+z))
∂
∂
y
(
ln
(
x
+
z
)
)
derivative y=2x-4
derivative
y
=
2
x
−
4
derivative of 1/(sqrt(x^2+5))
d
dx
(
1
√
x
2
+
5
)
limit as x approaches 1 of (x^5-1)/(x-1)
lim
x
→
1
(
x
5
−
1
x
−
1
)
derivative f(x)=xsin(2^x)
derivative
f
(
x
)
=
x
sin
(
2
x
)
1/x e^ytan(y)y^'=e^{x+y}
1
x
e
y
tan
(
y
)
y
′
=
e
x
+
y
(\partial)/(\partial y)((4x)/(x^2+y^2))
∂
∂
y
(
4
x
x
2
+
y
2
)
integral of 1/2 (cos(x))^2
∫
1
2
(
cos
(
x
)
)
2
dx
tangent f(x)=(40)/x ,(1,40)
tangent
f
(
x
)
=
4
0
x
,
(
1
,
4
0
)
integral of ((x+1)/(sqrt(x)))
∫
(
x
+
1
√
x
)
dx
integral of 1/2 x^5
∫
1
2
x
5
dx
limit as x approaches pi/2+of 2e^{tan(x)}
lim
x
→
π
2
+
(
2
e
tan
(
x
)
)
tangent f(x)=3x^4-8x^2,(-1,5)
tangent
f
(
x
)
=
3
x
4
−
8
x
2
,
(
−
1
,
5
)
(\partial)/(\partial x)(-3xyln(xy))
∂
∂
x
(
−
3
xy
ln
(
xy
)
)
(\partial)/(\partial x)((xy^2)/(z^3))
∂
∂
x
(
xy
2
z
3
)
y^{''}=-y
y
′
′
=
−
y
integral of x-7
∫
x
−
7
dx
limit as x approaches+0 of (e^{x^2}-1)/x
lim
x
→
+
0
(
e
x
2
−
1
x
)
derivative of (x^2+25/x)
d
dx
(
x
2
+
2
5
x
)
(\partial)/(\partial z)(ln(1+z^2))
∂
∂
z
(
ln
(
1
+
z
2
)
)
integral of-(6000)/((3x+50)^2)
∫
−
6
0
0
0
(
3
x
+
5
0
)
2
dx
limit as x approaches 15 of sqrt(2)
lim
x
→
1
5
(
√
2
)
테일러 e^{2x},1
taylor
e
2
x
,
1
(\partial)/(\partial x)(x^2-4y)
∂
∂
x
(
x
2
−
4
y
)
y(dy)/(dx)-e^{y^2}*x*cos(x)=0
y
dy
dx
−
e
y
2
·
x
·
cos
(
x
)
=
0
derivative of-(50/(x^3)+5/(x^2))
d
dx
(
−
5
0
x
3
+
5
x
2
)
integral of 4x^2sin(2x)
∫
4
x
2
sin
(
2
x
)
dx
(\partial)/(\partial x)(ln(1+x^2+y^2-z^2))
∂
∂
x
(
ln
(
1
+
x
2
+
y
2
−
z
2
)
)
(d^3y)/(dx^3)-cos(x)=0
d
3
y
dx
3
−
cos
(
x
)
=
0
integral from 6 to 8 of (28)/((x-6)^3)
∫
6
8
2
8
(
x
−
6
)
3
dx
integral of r^3
∫
r
3
dr
integral of (2x^2+5x+18)/(x(x^2+9))
∫
2
x
2
+
5
x
+
1
8
x
(
x
2
+
9
)
dx
경사지intercept (-9,-9),(-6,0)
slopeintercept
(
−
9
,
−
9
)
,
(
−
6
,
0
)
derivative 7*5^x
derivative
7
·
5
x
derivative of 5x^{-5}
d
dx
(
5
x
−
5
)
integral from 0 to 1 of sqrt(1+\sqrt{x)}
∫
0
1
√
1
+
√
x
dx
integral from 1 to 3 of (2x-1/x)^2
∫
1
3
(
2
x
−
1
x
)
2
dx
(6/x)^'
(
6
x
)
′
(dy)/(dx)-y=2e^x
dy
dx
−
y
=
2
e
x
limit as x approaches infinity of (5)^x
lim
x
→
∞
(
(
5
)
x
)
(\partial)/(\partial x)(e^{sin(x)}cos(x))
∂
∂
x
(
e
sin
(
x
)
cos
(
x
)
)
f(x)=7x^{-6}-5x^{-3}
f
(
x
)
=
7
x
−
6
−
5
x
−
3
지역 y=x,(0,1),x^2
area
y
=
x
,
(
0
,
1
)
,
x
2
2sqrt(x)((dy)/(dx))=cos^2(y)
2
√
x
(
dy
dx
)
=
cos
2
(
y
)
integral of 1/((x^2+21)^3)
∫
1
(
x
2
+
2
1
)
3
dx
integral of 3/(x+1)
∫
3
x
+
1
dx
xln(x)=y(1+sqrt(24+y^2))y^'(x),y(1)=1
x
ln
(
x
)
=
y
(
1
+
√
2
4
+
y
2
)
y
′
(
x
)
,
y
(
1
)
=
1
integral of sqrt((2x+2))
∫
√
(
2
x
+
2
)
dx
derivative f(x)=x^n
derivative
f
(
x
)
=
x
n
sum from n=0 to infinity of (1/2)^n
∑
n
=
0
∞
(
1
2
)
n
1
..
1201
1202
1203
1204
1205
..
2459