프로로 업그레이드
사이트 계속하기
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
솔루션
적분 계산기
도함수 계산기
대수 계산기
행렬 계산기
더...
그래프 작성
선 그래프
지수 그래프
이차 그래프
사인 그래프
더...
계산기
BMI 계산기
복리 계산기
백분율 계산기
가속도 계산기
더...
기하학
피타고라스 정리 계산기
원 면적 계산기
이등변삼각형 계산기
삼각형 계산기
더...
도구
메모
무리
치트 시트
워크시트
학습 가이드
실행
솔루션 확인
ko
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
개선하다
일반적인 문제
토픽
사전 대수
대수학
단어 문제
Functions & Graphing
기하학
삼각법
프리 미적분학
미적분학
통계
일반적인 미적분학 문제
y^{''}+y^'-6y=sin(x)
y
′
′
+
y
′
−
6
y
=
sin
(
x
)
y^{''}-5y+6y=e^{3x}-x^2
y
′
′
−
5
y
+
6
y
=
e
3
x
−
x
2
(d^2y)/(dx^2)-4(dy)/(dx)+3y=e
d
2
y
dx
2
−
4
dy
dx
+
3
y
=
e
y^{'''}-y^{''}+y^'-y=2e^x
y
′
′
′
−
y
′
′
+
y
′
−
y
=
2
e
x
y^{'''}+y^{''}+y^'+y=e^{-t}+11t
y
′
′
′
+
y
′
′
+
y
′
+
y
=
e
−
t
+
1
1
t
y^{'''}+y^{''}+y^'+y=e^{-t}+12t
y
′
′
′
+
y
′
′
+
y
′
+
y
=
e
−
t
+
1
2
t
y^{''}+3y^'=x^2e^{-3x}
y
′
′
+
3
y
′
=
x
2
e
−
3
x
y^{''}+y=g
y
′
′
+
y
=
g
(D^2+1)y=cos(x)
(
D
2
+
1
)
y
=
cos
(
x
)
y^{''}+2y^'+y=sin(8x)
y
′
′
+
2
y
′
+
y
=
sin
(
8
x
)
y^{''}-6y^'+5y=te^{2t},y(0)=2,y^'(0)=3
y
′
′
−
6
y
′
+
5
y
=
te
2
t
,
y
(
0
)
=
2
,
y
′
(
0
)
=
3
y^{'''}+12y^{''}-13y=xe^x+5x
y
′
′
′
+
1
2
y
′
′
−
1
3
y
=
xe
x
+
5
x
y^{''}+y=2,y(0)=0
y
′
′
+
y
=
2
,
y
(
0
)
=
0
y^{''}+5y^'-24y=-92t+48t^2
y
′
′
+
5
y
′
−
2
4
y
=
−
9
2
t
+
4
8
t
2
y^{''}-5y^'=5e^{5x}
y
′
′
−
5
y
′
=
5
e
5
x
y^{''}-5y^'+4y=e^{4t}
y
′
′
−
5
y
′
+
4
y
=
e
4
t
y^{''}-4y=2e^{2x}
y
′
′
−
4
y
=
2
e
2
x
y^{''}+y^'-2y=1+t
y
′
′
+
y
′
−
2
y
=
1
+
t
y^{'''}+25y^'=tan(5x)
y
′
′
′
+
2
5
y
′
=
tan
(
5
x
)
y^{''}-5y^'+6y=(x+1)^2e^{2x}
y
′
′
−
5
y
′
+
6
y
=
(
x
+
1
)
2
e
2
x
y^{''}-2y^'+5y=-8
y
′
′
−
2
y
′
+
5
y
=
−
8
y^{''}+y^'=tan^2(x)
y
′
′
+
y
′
=
tan
2
(
x
)
(d^2x)/(dt^2)+81x=2sin(9t)
d
2
x
dt
2
+
8
1
x
=
2
sin
(
9
t
)
(D^2-1)y=e^{-x}(2sin(x)+4cos(x))
(
D
2
−
1
)
y
=
e
−
x
(
2
sin
(
x
)
+
4
cos
(
x
)
)
(d^2y)/(dx^2)-y=x*e^{2x}
d
2
y
dx
2
−
y
=
x
·
e
2
x
y^{''}+4y^'+4y=5x+4-e^{5x}
y
′
′
+
4
y
′
+
4
y
=
5
x
+
4
−
e
5
x
y^{''}-6y^'+5y=34sin(3t)
y
′
′
−
6
y
′
+
5
y
=
3
4
sin
(
3
t
)
y^{''}-9y^'+2y=te^t
y
′
′
−
9
y
′
+
2
y
=
te
t
y^{''}+4y=8sin(2t)+5e^t
y
′
′
+
4
y
=
8
sin
(
2
t
)
+
5
e
t
y^{''}-8y^'+16y=45e^{7t}
y
′
′
−
8
y
′
+
1
6
y
=
4
5
e
7
t
(d^2y)/(dx^2)-2(dy)/(dx)=6x^2+2x-2
d
2
y
dx
2
−
2
dy
dx
=
6
x
2
+
2
x
−
2
y^{''}-8y^'+16y=2e^{4x}
y
′
′
−
8
y
′
+
1
6
y
=
2
e
4
x
y^{''}+4y^'+4y=e^xcos(x)
y
′
′
+
4
y
′
+
4
y
=
e
x
cos
(
x
)
y^{''}+4y^'+13y=5cos(2t)
y
′
′
+
4
y
′
+
1
3
y
=
5
cos
(
2
t
)
x^{''}-6x^'+10x=30t
x
′
′
−
6
x
′
+
1
0
x
=
3
0
t
y^{''}-y^'-12y=(x+1)e^x
y
′
′
−
y
′
−
1
2
y
=
(
x
+
1
)
e
x
y^{''}-14y^'+49y=35x+4
y
′
′
−
1
4
y
′
+
4
9
y
=
3
5
x
+
4
(d^2y)/(dt^2)+4y=sec^2(2t)
d
2
y
dt
2
+
4
y
=
sec
2
(
2
t
)
y^{''}-3y^'+2y=x^2e^x
y
′
′
−
3
y
′
+
2
y
=
x
2
e
x
y^{''}+y=e^t+e^{-t}
y
′
′
+
y
=
e
t
+
e
−
t
3(d^2y)/(dx^2)+4(dy)/(dx)+2=0
3
d
2
y
dx
2
+
4
dy
dx
+
2
=
0
y^{''}+3y=cos(x)
y
′
′
+
3
y
=
cos
(
x
)
y^{''}+25y=2x*cos(5x)
y
′
′
+
2
5
y
=
2
x
·
cos
(
5
x
)
y^{''''}+2y^{''}+y=cos(3x)+5
y
′
′
′
′
+
2
y
′
′
+
y
=
cos
(
3
x
)
+
5
y^{''}-y^'-2y=x,y(0)=1,y^'(0)=0
y
′
′
−
y
′
−
2
y
=
x
,
y
(
0
)
=
1
,
y
′
(
0
)
=
0
x^{''}-2x^'-3x=e^{4t}
x
′
′
−
2
x
′
−
3
x
=
e
4
t
y^{'''}-2y^{''}+y^'=-2e^x-3x
y
′
′
′
−
2
y
′
′
+
y
′
=
−
2
e
x
−
3
x
y^{'''}-6y^{''}=x^2
y
′
′
′
−
6
y
′
′
=
x
2
y^{'''}-6y^'=3-cos(x)
y
′
′
′
−
6
y
′
=
3
−
cos
(
x
)
y^{'''}-3y^{''}=9e^x
y
′
′
′
−
3
y
′
′
=
9
e
x
y^{''}+2y^'+2y=e^{-t}sin(3t)
y
′
′
+
2
y
′
+
2
y
=
e
−
t
sin
(
3
t
)
y^{''}-4y^'+5y=e^{2x}csc(x)
y
′
′
−
4
y
′
+
5
y
=
e
2
x
csc
(
x
)
y^{''}+4y=u_{pi}(t)-u_{3pi}(t)
y
′
′
+
4
y
=
u
π
(
t
)
−
u
3
π
(
t
)
y^{''}-2y^'+y=cos(3x)
y
′
′
−
2
y
′
+
y
=
cos
(
3
x
)
y^{''}-4y=4x^{(2)}e^{(2)}x
y
′
′
−
4
y
=
4
x
(
2
)
e
(
2
)
x
y^{''}-4y=e^xcos(x),y(0)=1,y^'(0)=2
y
′
′
−
4
y
=
e
x
cos
(
x
)
,
y
(
0
)
=
1
,
y
′
(
0
)
=
2
y^{'''}+6y^{''}+12y^'+8y=5e^{-2x}
y
′
′
′
+
6
y
′
′
+
1
2
y
′
+
8
y
=
5
e
−
2
x
(d^2y)/(dx^2)-7(dy)/(dx)+10y=e^{2x}+20
d
2
y
dx
2
−
7
dy
dx
+
1
0
y
=
e
2
x
+
2
0
y^{''}-2y^'-35y=-97t+70t^2
y
′
′
−
2
y
′
−
3
5
y
=
−
9
7
t
+
7
0
t
2
y^{'''}+y^{''}=7x^2
y
′
′
′
+
y
′
′
=
7
x
2
(D^2-2D+2)y=3e^xsin(x)
(
D
2
−
2
D
+
2
)
y
=
3
e
x
sin
(
x
)
y^{''}+9y=sin(x)-2
y
′
′
+
9
y
=
sin
(
x
)
−
2
y^{'''}-y^'=tan(x)
y
′
′
′
−
y
′
=
tan
(
x
)
y^{''}+4y^'+8y=12e^{-2x}sec(2x)
y
′
′
+
4
y
′
+
8
y
=
1
2
e
−
2
x
sec
(
2
x
)
y^{''}-4y=20
y
′
′
−
4
y
=
2
0
y^{''}+y=sinh(2x)
y
′
′
+
y
=
sinh
(
2
x
)
y^{''}+y^'+9.25=0
y
′
′
+
y
′
+
9
.
2
5
=
0
x^{''}+49x=65cos(6t)
x
′
′
+
4
9
x
=
6
5
cos
(
6
t
)
y^{''}-8y^'+16y=4e^{4x}
y
′
′
−
8
y
′
+
1
6
y
=
4
e
4
x
y^{''}-3y^'+2y=2e^{3x}+e^{-x}
y
′
′
−
3
y
′
+
2
y
=
2
e
3
x
+
e
−
x
y^{''}-2y^'+y=4e^x
y
′
′
−
2
y
′
+
y
=
4
e
x
y^{''}+y^'=n
y
′
′
+
y
′
=
n
y^{''}+y^'=6
y
′
′
+
y
′
=
6
y^{''}-10y^'+29y=87x
y
′
′
−
1
0
y
′
+
2
9
y
=
8
7
x
(D+1)3y=5e-x
(
D
+
1
)
3
y
=
5
e
−
x
y^{''}-4y=cos(2x)
y
′
′
−
4
y
=
cos
(
2
x
)
1/4 y^{''}+4y=3tan(4t)-1/2 e^{2t}
1
4
y
′
′
+
4
y
=
3
tan
(
4
t
)
−
1
2
e
2
t
y^{'''}-y^{''}-y^'+y=2e^{-x}
y
′
′
′
−
y
′
′
−
y
′
+
y
=
2
e
−
x
y^{''}+4y=(x^2-3)*sin(2x)
y
′
′
+
4
y
=
(
x
2
−
3
)
·
sin
(
2
x
)
4y^{''}+4y^'+y=4e^{-x/4}
4
y
′
′
+
4
y
′
+
y
=
4
e
−
x
4
y^{''}+8y^'+17y=2e^{-3x}
y
′
′
+
8
y
′
+
1
7
y
=
2
e
−
3
x
x^{''}+2x^'+41x=8cos(6t)
x
′
′
+
2
x
′
+
4
1
x
=
8
cos
(
6
t
)
y^{'''}+64y^'=tan(8x)
y
′
′
′
+
6
4
y
′
=
tan
(
8
x
)
y^{''}+y-5=0
y
′
′
+
y
−
5
=
0
2y^{''}+3y^'=-1
2
y
′
′
+
3
y
′
=
−
1
y^{''}+5y^'+6y=xe^x
y
′
′
+
5
y
′
+
6
y
=
xe
x
y^{''}-10y^'+21y=205x^2-100x+10
y
′
′
−
1
0
y
′
+
2
1
y
=
2
0
5
x
2
−
1
0
0
x
+
1
0
-x^{''}+x^'=6e^t+2t-2
−
x
′
′
+
x
′
=
6
e
t
+
2
t
−
2
y^{''}+5y^'+6y=12e^{-5t}+12e^{-t}+24
y
′
′
+
5
y
′
+
6
y
=
1
2
e
−
5
t
+
1
2
e
−
t
+
2
4
(d^2y)/(dx^2)-y=cos(2x)
d
2
y
dx
2
−
y
=
cos
(
2
x
)
y^{''}-2y^'+y=x^3
y
′
′
−
2
y
′
+
y
=
x
3
x^{''}+3x^'+21x=11cos(4t)
x
′
′
+
3
x
′
+
2
1
x
=
1
1
cos
(
4
t
)
y^{'''}+y^{''}=2x+5
y
′
′
′
+
y
′
′
=
2
x
+
5
y^{''}+y=tan(x)+x
y
′
′
+
y
=
tan
(
x
)
+
x
y^{''}=-0.1y^'-x
y
′
′
=
−
0
.
1
y
′
−
x
y^{''}+4y=g(t)
y
′
′
+
4
y
=
g
(
t
)
y^{''}-3y^'=2x-3
y
′
′
−
3
y
′
=
2
x
−
3
y^{'''}-6y^{''}+8y^'=sin(2t)+t^2e^t
y
′
′
′
−
6
y
′
′
+
8
y
′
=
sin
(
2
t
)
+
t
2
e
t
y^{''}-6y^'+9y=15x+4
y
′
′
−
6
y
′
+
9
y
=
1
5
x
+
4
y^{''}+y=2x*e^x-2sin(x)
y
′
′
+
y
=
2
x
·
e
x
−
2
sin
(
x
)
1
..
2346
2347
2348
2349
2350
..
2459