프로로 업그레이드
사이트 계속하기
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
솔루션
적분 계산기
도함수 계산기
대수 계산기
행렬 계산기
더...
그래프 작성
선 그래프
지수 그래프
이차 그래프
사인 그래프
더...
계산기
BMI 계산기
복리 계산기
백분율 계산기
가속도 계산기
더...
기하학
피타고라스 정리 계산기
원 면적 계산기
이등변삼각형 계산기
삼각형 계산기
더...
도구
메모
무리
치트 시트
워크시트
학습 가이드
실행
솔루션 확인
ko
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
개선하다
일반적인 문제
토픽
사전 대수
대수학
단어 문제
Functions & Graphing
기하학
삼각법
프리 미적분학
미적분학
통계
일반적인 미적분학 문제
4y^{''}-8y=2
4
y
′
′
−
8
y
=
2
y^{''}-y=2.9cos(t),y(0)=0,y^'(0)=2.9
y
′
′
−
y
=
2
.
9
cos
(
t
)
,
y
(
0
)
=
0
,
y
′
(
0
)
=
2
.
9
(d^2y)/(dx^2)+3(dy)/(dx)-5y=e^x
d
2
y
dx
2
+
3
dy
dx
−
5
y
=
e
x
(d^2y)/(dt^2)-4(dy)/(dt)+4y=e^{-4t}
d
2
y
dt
2
−
4
dy
dt
+
4
y
=
e
−
4
t
y^{''}+8y^'+15y=-6cos(5x)
y
′
′
+
8
y
′
+
1
5
y
=
−
6
cos
(
5
x
)
x^{''}+bx^'-c=0
x
′
′
+
bx
′
−
c
=
0
(d^2y)/(dx^2)+(dy)/(dx)=x^2
d
2
y
dx
2
+
dy
dx
=
x
2
y^{''}-y=2+x^2
y
′
′
−
y
=
2
+
x
2
y^{''}+by^'+cy=e^xsin(x)
y
′
′
+
by
′
+
cy
=
e
x
sin
(
x
)
10y^{''}+50y^'+57.6y=cos(x)
1
0
y
′
′
+
5
0
y
′
+
5
7
.
6
y
=
cos
(
x
)
y^{''}+y=5sin(4x)
y
′
′
+
y
=
5
sin
(
4
x
)
12y^{''}+5y^'-3y=e^x
1
2
y
′
′
+
5
y
′
−
3
y
=
e
x
y^{''}-3y^'-2y=9e^{-x}
y
′
′
−
3
y
′
−
2
y
=
9
e
−
x
(D^3+D^2+5D+5)y=5cos(2x)
(
D
3
+
D
2
+
5
D
+
5
)
y
=
5
cos
(
2
x
)
y^{''}+4y=x(sin(2x))
y
′
′
+
4
y
=
x
(
sin
(
2
x
)
)
y^{''}-2y^'-3y=32e^{-x}
y
′
′
−
2
y
′
−
3
y
=
3
2
e
−
x
y^{''}-4y^'+3y=2sin(4t)
y
′
′
−
4
y
′
+
3
y
=
2
sin
(
4
t
)
x^{'''}-4x^{''}-3x^'+18=0
x
′
′
′
−
4
x
′
′
−
3
x
′
+
1
8
=
0
y^{''''}-y^{''}=x^2+x
y
′
′
′
′
−
y
′
′
=
x
2
+
x
y^{''}+(-16)y+64=-2/(3x)e^{8x}
y
′
′
+
(
−
1
6
)
y
+
6
4
=
−
2
3
x
e
8
x
y^{''}+y=2,y(0)=4,y^'(0)=2
y
′
′
+
y
=
2
,
y
(
0
)
=
4
,
y
′
(
0
)
=
2
y^{''}+y^'-3y=e^{2x}
y
′
′
+
y
′
−
3
y
=
e
2
x
y^{''}+6y^'+5y=36e^x
y
′
′
+
6
y
′
+
5
y
=
3
6
e
x
y^{'''}-y^{''}=x-2
y
′
′
′
−
y
′
′
=
x
−
2
(d^2y)/(dx^2)+2(dy)/(dx)+y=cos^2(x)
d
2
y
dx
2
+
2
dy
dx
+
y
=
cos
2
(
x
)
y^{''}+6y^'+9y=(e^{-3x})/(x^2+1)
y
′
′
+
6
y
′
+
9
y
=
e
−
3
x
x
2
+
1
y^{''}-2y+5y=1,+e^{-t}y(0)=0,y^'(0)=0
y
′
′
−
2
y
+
5
y
=
1
,
+
e
−
t
y
(
0
)
=
0
,
y
′
(
0
)
=
0
(d^2y)/(dx^2)+y=xcos(2x)
d
2
y
dx
2
+
y
=
x
cos
(
2
x
)
y^{''}+2y^'=x^2+3x^2e^{-2x}+e^{2x}+1
y
′
′
+
2
y
′
=
x
2
+
3
x
2
e
−
2
x
+
e
2
x
+
1
y^{''}-8y^'+12y=e^{2x}(x^2-1)
y
′
′
−
8
y
′
+
1
2
y
=
e
2
x
(
x
2
−
1
)
y^{''}+y^'-12y=2te-4t,y(0)=-5,y^'(0)=-4
y
′
′
+
y
′
−
1
2
y
=
2
te
−
4
t
,
y
(
0
)
=
−
5
,
y
′
(
0
)
=
−
4
y^{''}+25y=5tan^2(5x)cos(5x)
y
′
′
+
2
5
y
=
5
tan
2
(
5
x
)
cos
(
5
x
)
y^{''}+y=sqrt(2sin(\sqrt{2t))}
y
′
′
+
y
=
√
2
sin
(
√
2
t
)
y^{'''}-2y^{''}-4y^'+8=0
y
′
′
′
−
2
y
′
′
−
4
y
′
+
8
=
0
y^{''}-8y^'-9y=2e^{-x}-9x
y
′
′
−
8
y
′
−
9
y
=
2
e
−
x
−
9
x
y^{''}-5y^'+4y=x,y^1(0)=e^x
y
′
′
−
5
y
′
+
4
y
=
x
,
y
1
(
0
)
=
e
x
y^{''}-5y^'+6y=2e^{-x},y(0)=0,y^'(0)=1
y
′
′
−
5
y
′
+
6
y
=
2
e
−
x
,
y
(
0
)
=
0
,
y
′
(
0
)
=
1
y^{''}+5y=e^t
y
′
′
+
5
y
=
e
t
y^{'''}-y^{''}-y^'+y=-2sin(x)+3e^x
y
′
′
′
−
y
′
′
−
y
′
+
y
=
−
2
sin
(
x
)
+
3
e
x
y^{''}+y=1,y^'(0)=-1
y
′
′
+
y
=
1
,
y
′
(
0
)
=
−
1
y^{''}+y=1,y^'(0)=-3
y
′
′
+
y
=
1
,
y
′
(
0
)
=
−
3
y^{''}+4y=tcos(2t)
y
′
′
+
4
y
=
t
cos
(
2
t
)
y^{''}-2y^'-3y=5e^4x,y(0)=1,y^'(0)=0
y
′
′
−
2
y
′
−
3
y
=
5
e
4
x
,
y
(
0
)
=
1
,
y
′
(
0
)
=
0
9y^{''}+4y=3x+12e^{-x}
9
y
′
′
+
4
y
=
3
x
+
1
2
e
−
x
y^{''''}+8y^{''}+16y=-sin(x)
y
′
′
′
′
+
8
y
′
′
+
1
6
y
=
−
sin
(
x
)
x^{''}+6x^'+23x=12cos(4t)
x
′
′
+
6
x
′
+
2
3
x
=
1
2
cos
(
4
t
)
(d^2+9)y=30sin^3(x)
(
d
2
+
9
)
y
=
3
0
sin
3
(
x
)
y^{''''}-y=11t+cos(t)
y
′
′
′
′
−
y
=
1
1
t
+
cos
(
t
)
y^{''}-4y^'+4y=10e^{2x}
y
′
′
−
4
y
′
+
4
y
=
1
0
e
2
x
y^{''}-2y^'+3=e^t,y(0)=1,y^'(0)=2
y
′
′
−
2
y
′
+
3
=
e
t
,
y
(
0
)
=
1
,
y
′
(
0
)
=
2
2(d^2y)/(dx^2)-5(dy)/(dx)-3=0
2
d
2
y
dx
2
−
5
dy
dx
−
3
=
0
(d^3-3d^2+4d-2)y=x^3
(
d
3
−
3
d
2
+
4
d
−
2
)
y
=
x
3
y^{''}=2y+tan^3(x),y(0)= 1/2 tan(x)
y
′
′
=
2
y
+
tan
3
(
x
)
,
y
(
0
)
=
1
2
tan
(
x
)
x^{''}+9x=10cos(2t)
x
′
′
+
9
x
=
1
0
cos
(
2
t
)
y^{''}-7y^'+10y=30t+9,y(0)=7,y^'(0)=26
y
′
′
−
7
y
′
+
1
0
y
=
3
0
t
+
9
,
y
(
0
)
=
7
,
y
′
(
0
)
=
2
6
-4y^{''}+y^'+9y=15
−
4
y
′
′
+
y
′
+
9
y
=
1
5
y^{''}+50y^'+100=0
y
′
′
+
5
0
y
′
+
1
0
0
=
0
y^{''}-3y^'=-18x,y(0)=0,y^'(0)=5
y
′
′
−
3
y
′
=
−
1
8
x
,
y
(
0
)
=
0
,
y
′
(
0
)
=
5
y^{''}-8y^'+17y=x^2e^{4x}
y
′
′
−
8
y
′
+
1
7
y
=
x
2
e
4
x
y^{''}+25y^'=6sin(x)
y
′
′
+
2
5
y
′
=
6
sin
(
x
)
(d^2y)/(dx^2)-2(dy)/(dx)+y=(e^x)/(x^3)
d
2
y
dx
2
−
2
dy
dx
+
y
=
e
x
x
3
y^{''}-y^'=t^2
y
′
′
−
y
′
=
t
2
y^{''}-3y^'+2y=(x^2+x)e^{3x}
y
′
′
−
3
y
′
+
2
y
=
(
x
2
+
x
)
e
3
x
y^{''}+2y^'+y=e^{3x},y(0)=0,y^'(0)=0
y
′
′
+
2
y
′
+
y
=
e
3
x
,
y
(
0
)
=
0
,
y
′
(
0
)
=
0
y^{''}-4y^'+3y=9x^2
y
′
′
−
4
y
′
+
3
y
=
9
x
2
y^{''}+6y^'-7y=21x^2-8x-30
y
′
′
+
6
y
′
−
7
y
=
2
1
x
2
−
8
x
−
3
0
y^{''}+y^'-2y=e^{-2*x}sin(x)
y
′
′
+
y
′
−
2
y
=
e
−
2
·
x
sin
(
x
)
y^{''}-2y^'-3y=6x+4,y(0)=1,y^'(0)=-3
y
′
′
−
2
y
′
−
3
y
=
6
x
+
4
,
y
(
0
)
=
1
,
y
′
(
0
)
=
−
3
y^{''}+5y=xe^x
y
′
′
+
5
y
=
xe
x
y^{''}+9y=5x,y(0)=1,y^'(0)=3
y
′
′
+
9
y
=
5
x
,
y
(
0
)
=
1
,
y
′
(
0
)
=
3
y^{''}-y^'-2y=cosh^2(t)
y
′
′
−
y
′
−
2
y
=
cosh
2
(
t
)
y^{''}-y=e^{2x},y(0)=0,y^'(0)=0
y
′
′
−
y
=
e
2
x
,
y
(
0
)
=
0
,
y
′
(
0
)
=
0
y^{''}-y^'+y=e^{2t}
y
′
′
−
y
′
+
y
=
e
2
t
d(t)=6000000*4^{-0.15*5}
d
(
t
)
=
6
0
0
0
0
0
0
·
4
−
0
.
1
5
·
5
y^{''}-4y=e^{2x} 1/x
y
′
′
−
4
y
=
e
2
x
1
x
y^{''}-3y^'+y=2e^{3t},y(0)=0,y^'(0)=4
y
′
′
−
3
y
′
+
y
=
2
e
3
t
,
y
(
0
)
=
0
,
y
′
(
0
)
=
4
y^{''}+3y^'+2y=6e^{2t}
y
′
′
+
3
y
′
+
2
y
=
6
e
2
t
y^{'''}+2y^{''}-11y^'-12y=4
y
′
′
′
+
2
y
′
′
−
1
1
y
′
−
1
2
y
=
4
y^{''}+y^'-42y=-130t+84t^2
y
′
′
+
y
′
−
4
2
y
=
−
1
3
0
t
+
8
4
t
2
(d^2y)/(dt^2)+12(dy)/(dt)+32y=32\H(t)
d
2
y
dt
2
+
1
2
dy
dt
+
3
2
y
=
3
2
H
(
t
)
solvefor d,d(t)=-t^2+5t
solvefor
d
,
d
(
t
)
=
−
t
2
+
5
t
y^{''}+2y^'+2y=2(x+1)^2
y
′
′
+
2
y
′
+
2
y
=
2
(
x
+
1
)
2
y^{''}+3y^'-10=0,y(0)=1,y^'(0)=9
y
′
′
+
3
y
′
−
1
0
=
0
,
y
(
0
)
=
1
,
y
′
(
0
)
=
9
y^{''}+y^'-12y=e^{2x}
y
′
′
+
y
′
−
1
2
y
=
e
2
x
y^{''}+4y^'+50y=65cos(2t)
y
′
′
+
4
y
′
+
5
0
y
=
6
5
cos
(
2
t
)
y^{''}-2y^'+y=e^xsec^2(x)
y
′
′
−
2
y
′
+
y
=
e
x
sec
2
(
x
)
1/4 y^{''}+16y=8sin(8t)
1
4
y
′
′
+
1
6
y
=
8
sin
(
8
t
)
y^{''}-9y=sin(x)+2cos(x)
y
′
′
−
9
y
=
sin
(
x
)
+
2
cos
(
x
)
y^{''}-5y^'+6y=(x+1)e^x
y
′
′
−
5
y
′
+
6
y
=
(
x
+
1
)
e
x
y^{''}-3y^'+2y=10
y
′
′
−
3
y
′
+
2
y
=
1
0
y^{''}-4y^'+4y=4(x+1)
y
′
′
−
4
y
′
+
4
y
=
4
(
x
+
1
)
y^{''}-6y+9y=e^{-2x}sin(3x)
y
′
′
−
6
y
+
9
y
=
e
−
2
x
sin
(
3
x
)
y^{''}-y^'+2y=3sin(3x)
y
′
′
−
y
′
+
2
y
=
3
sin
(
3
x
)
y^{''''}+2y^{''}+y=9t+6
y
′
′
′
′
+
2
y
′
′
+
y
=
9
t
+
6
y^{''''}+2y^{''}+y=9t+2
y
′
′
′
′
+
2
y
′
′
+
y
=
9
t
+
2
y^{''}-y=x+e^x
y
′
′
−
y
=
x
+
e
x
y^{''}+(440*2*pi)^2y=1
y
′
′
+
(
4
4
0
·
2
·
π
)
2
y
=
1
y^{''}+25y=5x,y(0)=1,y^'(0)=5
y
′
′
+
2
5
y
=
5
x
,
y
(
0
)
=
1
,
y
′
(
0
)
=
5
y^{''}-2y^'-3y=8ex-3
y
′
′
−
2
y
′
−
3
y
=
8
ex
−
3
y^{''}+2y^'+4y=6cos(3x)
y
′
′
+
2
y
′
+
4
y
=
6
cos
(
3
x
)
1
..
2366
2367
2368
2369
2370
..
2459