프로로 업그레이드
사이트 계속하기
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
솔루션
적분 계산기
도함수 계산기
대수 계산기
행렬 계산기
더...
그래프 작성
선 그래프
지수 그래프
이차 그래프
사인 그래프
더...
계산기
BMI 계산기
복리 계산기
백분율 계산기
가속도 계산기
더...
기하학
피타고라스 정리 계산기
원 면적 계산기
이등변삼각형 계산기
삼각형 계산기
더...
도구
메모
무리
치트 시트
워크시트
학습 가이드
실행
솔루션 확인
ko
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
개선하다
일반적인 문제
토픽
사전 대수
대수학
단어 문제
Functions & Graphing
기하학
삼각법
프리 미적분학
미적분학
통계
일반적인 Functions & Graphing 문제
p(x)=x^4-8x^2-9
p
(
x
)
=
x
4
−
8
x
2
−
9
y=17x^2+10
y
=
1
7
x
2
+
1
0
f(x)=(x^2-2^x)/(1000)
f
(
x
)
=
x
2
−
2
x
1
0
0
0
y=-6x-10
y
=
−
6
x
−
1
0
f(x)=((3x^2-12x+16))/((x^2-4x+5))
f
(
x
)
=
(
3
x
2
−
1
2
x
+
1
6
)
(
x
2
−
4
x
+
5
)
p(x)=-x^2+4
p
(
x
)
=
−
x
2
+
4
f(x)=(-1)/(3x+2)
f
(
x
)
=
−
1
3
x
+
2
f(s)=(s+3)/(((s+5)(s^2+4s+5)))
f
(
s
)
=
s
+
3
(
(
s
+
5
)
(
s
2
+
4
s
+
5
)
)
f(x)=4x+35
f
(
x
)
=
4
x
+
3
5
f(n)=3n+8
f
(
n
)
=
3
n
+
8
f(x)=x^3-23x^2+42x-120
f
(
x
)
=
x
3
−
2
3
x
2
+
4
2
x
−
1
2
0
f(n)= 5/(n+3)
f
(
n
)
=
5
n
+
3
y=(log_{10}(1))/(3x)
y
=
log
1
0
(
1
)
3
x
f(x)= 1/(2x^2+2x-6)
f
(
x
)
=
1
2
x
2
+
2
x
−
6
y= 4/(5*x+2)
y
=
4
5
·
x
+
2
y=x^3-3x+7
y
=
x
3
−
3
x
+
7
p(x)=x^3+3x^2+3x+1
p
(
x
)
=
x
3
+
3
x
2
+
3
x
+
1
f(x)=18500(0.25-x^2),0<x>0.5
f
(
x
)
=
1
8
5
0
0
(
0
.
2
5
−
x
2
)
,
0
<
x
>
0
.
5
f(x)=x^4-10
f
(
x
)
=
x
4
−
1
0
f(x)=0.5x^3
f
(
x
)
=
0
.
5
x
3
f(x)=(5x-1)/4
f
(
x
)
=
5
x
−
1
4
x=t^{-5}
x
=
t
−
5
y=tan(2x^2+5x)
y
=
tan
(
2
x
2
+
5
x
)
y=-6x^2+2
y
=
−
6
x
2
+
2
f(x)=(x-4)^2+12
f
(
x
)
=
(
x
−
4
)
2
+
1
2
f(x)=|2x+7|
f
(
x
)
=
|
2
x
+
7
|
y=5cos(x)-3
y
=
5
cos
(
x
)
−
3
y=(x^2+31)/4
y
=
x
2
+
3
1
4
r(x)= x/((x-1)(x+2))
r
(
x
)
=
x
(
x
−
1
)
(
x
+
2
)
y=28x
y
=
2
8
x
y=-3*(x-2)^2+2
y
=
−
3
·
(
x
−
2
)
2
+
2
f(y)=34y^2+12y+5
f
(
y
)
=
3
4
y
2
+
1
2
y
+
5
y=-x^4+4x^2-1
y
=
−
x
4
+
4
x
2
−
1
y=20ln(x)+25
y
=
2
0
ln
(
x
)
+
2
5
f(x)=((3x-1))/((2x-2))
f
(
x
)
=
(
3
x
−
1
)
(
2
x
−
2
)
f(u)=cos^2(u)
f
(
u
)
=
cos
2
(
u
)
f(x)=(x+1)10
f
(
x
)
=
(
x
+
1
)
1
0
f(a)=-sin^3(a)
f
(
a
)
=
−
sin
3
(
a
)
f(a)=-a^3+5a^2+a-17
f
(
a
)
=
−
a
3
+
5
a
2
+
a
−
1
7
y=-2x+4sqrt(x^2)+1
y
=
−
2
x
+
4
√
x
2
+
1
y=3sin^2(x)
y
=
3
sin
2
(
x
)
y=sqrt(1-\sqrt{1+x)}
y
=
√
1
−
√
1
+
x
y=((10^x-10^{x-1}))/((10^{x+1)+10^x)}
y
=
(
1
0
x
−
1
0
x
−
1
)
(
1
0
x
+
1
+
1
0
x
)
y=((sqrt(x)-1)/((sqrt(x))))^2
y
=
(
√
x
−
1
(
√
x
)
)
2
f(x)=8x^3+7x^2-14x+5
f
(
x
)
=
8
x
3
+
7
x
2
−
1
4
x
+
5
f(x)=2x^2+14x-60
f
(
x
)
=
2
x
2
+
1
4
x
−
6
0
f(x)=cos^3(x^2)
f
(
x
)
=
cos
3
(
x
2
)
f(t)=e^2tt^2
f
(
t
)
=
e
2
tt
2
f(x)=((5-2x))/((3x+2))
f
(
x
)
=
(
5
−
2
x
)
(
3
x
+
2
)
f(x)=-x-4x-2
f
(
x
)
=
−
x
−
4
x
−
2
y=(x+5)(x+4)
y
=
(
x
+
5
)
(
x
+
4
)
y=cos(3x)-3x
y
=
cos
(
3
x
)
−
3
x
y=x^2cos(x)-2xsin(x)-2cos(x)
y
=
x
2
cos
(
x
)
−
2
x
sin
(
x
)
−
2
cos
(
x
)
f(x)= 1/6*x+1/6
f
(
x
)
=
1
6
·
x
+
1
6
f(x)=-4(x+1)^2-3
f
(
x
)
=
−
4
(
x
+
1
)
2
−
3
y=(2t-3)^3
y
=
(
2
t
−
3
)
3
f(x)=x+2sqrt(x)
f
(
x
)
=
x
+
2
√
x
f(n)=(13)/n
f
(
n
)
=
1
3
n
f(x)=|x^2+3x|+x^2-2
f
(
x
)
=
|
x
2
+
3
x
|
+
x
2
−
2
f(x)=(x^7)/(40)+(x^3)/(10)-40x
f
(
x
)
=
x
7
4
0
+
x
3
1
0
−
4
0
x
f(a)=2sin^2(a)
f
(
a
)
=
2
sin
2
(
a
)
f(x)=(3x-7)/2
f
(
x
)
=
3
x
−
7
2
f(x)=x*ln^2(x)
f
(
x
)
=
x
·
ln
2
(
x
)
y=sin^2(x)-6sin(x)+4
y
=
sin
2
(
x
)
−
6
sin
(
x
)
+
4
f(t)=(10.3t)/3
f
(
t
)
=
1
0
.
3
t
3
f(x)=cos(3x^2+x-1)
f
(
x
)
=
cos
(
3
x
2
+
x
−
1
)
f(s)=4s^2-4s-1
f
(
s
)
=
4
s
2
−
4
s
−
1
y=((x-1))/((x^2+1))
y
=
(
x
−
1
)
(
x
2
+
1
)
f(-5)=-x^2-10x+16
f
(
−
5
)
=
−
x
2
−
1
0
x
+
1
6
f(x)= 1/((ln(x))^{x-1)}
f
(
x
)
=
1
(
ln
(
x
)
)
x
−
1
f(z)=0
f
(
z
)
=
0
f(n)=n^4+100n^2+2^n
f
(
n
)
=
n
4
+
1
0
0
n
2
+
2
n
p(x)= 1/2
p
(
x
)
=
1
2
f(x)=tan^2(x)+cos^2(x)
f
(
x
)
=
tan
2
(
x
)
+
cos
2
(
x
)
y= 2/(x^2+2)
y
=
2
x
2
+
2
f(x)=0.09x+0.16
f
(
x
)
=
0
.
0
9
x
+
0
.
1
6
y=x^5-2x^3+1
y
=
x
5
−
2
x
3
+
1
f(t)=5t^2+14t+3
f
(
t
)
=
5
t
2
+
1
4
t
+
3
y=e*(x^2+2x+3)
y
=
e
·
(
x
2
+
2
x
+
3
)
f(x)=x^3,-1<= x<= 1
f
(
x
)
=
x
3
,
−
1
≤
x
≤
1
f(x)=x^4-8
f
(
x
)
=
x
4
−
8
f(x)=x^3+12x^2+28x+64
f
(
x
)
=
x
3
+
1
2
x
2
+
2
8
x
+
6
4
f(x)=((x^4+1))/((x^2))
f
(
x
)
=
(
x
4
+
1
)
(
x
2
)
p(x)=x^2-8x+15
p
(
x
)
=
x
2
−
8
x
+
1
5
f(x)=sin^2(x)+4cos^2(x)+cos^4(x)+1
f
(
x
)
=
sin
2
(
x
)
+
4
cos
2
(
x
)
+
cos
4
(
x
)
+
1
f(x)=((log_{10}(x)))/((x^2))
f
(
x
)
=
(
log
1
0
(
x
)
)
(
x
2
)
f(x)=((sin(x)))/((1+cos(x)))
f
(
x
)
=
(
sin
(
x
)
)
(
1
+
cos
(
x
)
)
f(x)=x^3+4x^2+x+1
f
(
x
)
=
x
3
+
4
x
2
+
x
+
1
y=-3x^2-x-1
y
=
−
3
x
2
−
x
−
1
y=3x^2e^1-x^2
y
=
3
x
2
e
1
−
x
2
f(p)=p^2+4p+5
f
(
p
)
=
p
2
+
4
p
+
5
f(a)=3a^2+6a-4
f
(
a
)
=
3
a
2
+
6
a
−
4
f(x)=5x^2-13x-5
f
(
x
)
=
5
x
2
−
1
3
x
−
5
f(x)=sqrt(7)*x^2+4x-3sqrt(7)
f
(
x
)
=
√
7
·
x
2
+
4
x
−
3
√
7
뿌리 (1+sin(x))/n
roots
1
+
sin
(
x
)
n
f(x)=x^2-4x+15
f
(
x
)
=
x
2
−
4
x
+
1
5
f(x)=5x^3-8x+3x^5+4x^2-7x^4+1
f
(
x
)
=
5
x
3
−
8
x
+
3
x
5
+
4
x
2
−
7
x
4
+
1
f(x)=7x-3x^3-5x^2-3
f
(
x
)
=
7
x
−
3
x
3
−
5
x
2
−
3
f(x)=log_{2}(cos^2(x))
f
(
x
)
=
log
2
(
cos
2
(
x
)
)
y=2cos(x)-sin(x)
y
=
2
cos
(
x
)
−
sin
(
x
)
1
..
932
933
934
935
936
..
1324