프로로 업그레이드
사이트 계속하기
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
솔루션
적분 계산기
도함수 계산기
대수 계산기
행렬 계산기
더...
그래프 작성
선 그래프
지수 그래프
이차 그래프
사인 그래프
더...
계산기
BMI 계산기
복리 계산기
백분율 계산기
가속도 계산기
더...
기하학
피타고라스 정리 계산기
원 면적 계산기
이등변삼각형 계산기
삼각형 계산기
더...
도구
메모
무리
치트 시트
워크시트
학습 가이드
실행
솔루션 확인
ko
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
개선하다
일반적인 문제
토픽
사전 대수
대수학
단어 문제
Functions & Graphing
기하학
삼각법
프리 미적분학
미적분학
통계
일반적인 미적분학 문제
y^{''}+5y^'+6y=-19te^{(2t)}
y
′
′
+
5
y
′
+
6
y
=
−
1
9
te
(
2
t
)
y^{''}+9y=g(t),y(0)=4,y^'(0)=0
y
′
′
+
9
y
=
g
(
t
)
,
y
(
0
)
=
4
,
y
′
(
0
)
=
0
y^{''}+5y^'+4y=2e^{-5x},y(0)=4,y^'(0)=3
y
′
′
+
5
y
′
+
4
y
=
2
e
−
5
x
,
y
(
0
)
=
4
,
y
′
(
0
)
=
3
(d^2y)/(dx^2)+(dy)/(dx)-2y=9xe^{3x}
d
2
y
dx
2
+
dy
dx
−
2
y
=
9
xe
3
x
D^2(D+2)y=2+e^{(-t)/2}
D
2
(
D
+
2
)
y
=
2
+
e
−
t
2
x^{''}+x^'=2t+1
x
′
′
+
x
′
=
2
t
+
1
y^{''''}+2y^{''}+y=3t+8
y
′
′
′
′
+
2
y
′
′
+
y
=
3
t
+
8
y^{''}-9y^'+18=0
y
′
′
−
9
y
′
+
1
8
=
0
y^{''}-2y^'+y=(6e^x)/(1+x^2)
y
′
′
−
2
y
′
+
y
=
6
e
x
1
+
x
2
y^{''}=y^'+y-1,y(0)=0,y^'(0)=0
y
′
′
=
y
′
+
y
−
1
,
y
(
0
)
=
0
,
y
′
(
0
)
=
0
2y^{''}+3y^'+8y=g(x)
2
y
′
′
+
3
y
′
+
8
y
=
g
(
x
)
(d^2-2d+1)y=xe^xsin(x)
(
d
2
−
2
d
+
1
)
y
=
xe
x
sin
(
x
)
y^{''}+4y=3t+2
y
′
′
+
4
y
=
3
t
+
2
y^{''}-2y^'+y=(4x^2-3+e^x)/x
y
′
′
−
2
y
′
+
y
=
4
x
2
−
3
+
e
x
x
y^{'''}+y^{''}=x^2
y
′
′
′
+
y
′
′
=
x
2
y^{'''}-2y^{''}=3(y^'+x^2-1)
y
′
′
′
−
2
y
′
′
=
3
(
y
′
+
x
2
−
1
)
y^{'''}-4y^{''}+4y^'=x^2+4e^{2x}
y
′
′
′
−
4
y
′
′
+
4
y
′
=
x
2
+
4
e
2
x
y^{''}-y=2x^4+5x^2-10x
y
′
′
−
y
=
2
x
4
+
5
x
2
−
1
0
x
y^{''}+2y^'+5y=4e^{(-x)}-xcos(2x)
y
′
′
+
2
y
′
+
5
y
=
4
e
(
−
x
)
−
x
cos
(
2
x
)
(D^2+1)y=sin(x)sin(2x)
(
D
2
+
1
)
y
=
sin
(
x
)
sin
(
2
x
)
y^{''}+16y=sin(3x)
y
′
′
+
1
6
y
=
sin
(
3
x
)
2x^{''}-x^'+3t=5
2
x
′
′
−
x
′
+
3
t
=
5
y^{''}-2y^'+82y=excos(9x)
y
′
′
−
2
y
′
+
8
2
y
=
ex
cos
(
9
x
)
y^{''}-9y^'+6y=xe^x
y
′
′
−
9
y
′
+
6
y
=
xe
x
y^{''}-2y^'+2y=5x^2-9x+5
y
′
′
−
2
y
′
+
2
y
=
5
x
2
−
9
x
+
5
y^{''}+5y=-5-6x+12x^2-5x^3+5x^4
y
′
′
+
5
y
=
−
5
−
6
x
+
1
2
x
2
−
5
x
3
+
5
x
4
y^{''}+5y^'-6y=36x+98xe^x
y
′
′
+
5
y
′
−
6
y
=
3
6
x
+
9
8
xe
x
y^{''}+49y=49sec^2(7t)
y
′
′
+
4
9
y
=
4
9
sec
2
(
7
t
)
y^{''}-y^'=-2
y
′
′
−
y
′
=
−
2
4y+7y^'+2y^{''}=10*cos(4x)
4
y
+
7
y
′
+
2
y
′
′
=
1
0
·
cos
(
4
x
)
y^{''}-y^'+y=sin(t)-3e^{2t}
y
′
′
−
y
′
+
y
=
sin
(
t
)
−
3
e
2
t
y^{''}-2y^'+y=3e^t
y
′
′
−
2
y
′
+
y
=
3
e
t
y^{''}+2y^'+y=x^2e^xcos(x)
y
′
′
+
2
y
′
+
y
=
x
2
e
x
cos
(
x
)
y^{''}-5y^'+4y=e^x
y
′
′
−
5
y
′
+
4
y
=
e
x
y^{''}-2y^'-3y=e^{3x}-sin(x)
y
′
′
−
2
y
′
−
3
y
=
e
3
x
−
sin
(
x
)
16y^{''}-8y^'+y=33-16x+x^2
1
6
y
′
′
−
8
y
′
+
y
=
3
3
−
1
6
x
+
x
2
y^{''}-8y^'+7y=4e^3x
y
′
′
−
8
y
′
+
7
y
=
4
e
3
x
y^{''}-9y^'=(9x)/(e^{3x)}
y
′
′
−
9
y
′
=
9
x
e
3
x
y^{''}-4y^'=13e^{12x}
y
′
′
−
4
y
′
=
1
3
e
1
2
x
y^{''}+y^'-2y=sin(t)
y
′
′
+
y
′
−
2
y
=
sin
(
t
)
y^{'''}+324y^'=tan(18x)
y
′
′
′
+
3
2
4
y
′
=
tan
(
1
8
x
)
2y^{''}+3y^'+4y=-5cos(x)+sin(x)
2
y
′
′
+
3
y
′
+
4
y
=
−
5
cos
(
x
)
+
sin
(
x
)
y^{''}+k^2y=ksin(kx+a)
y
′
′
+
k
2
y
=
k
sin
(
kx
+
a
)
y^{''}+8y^'+25y=10sin(5t)-25
y
′
′
+
8
y
′
+
2
5
y
=
1
0
sin
(
5
t
)
−
2
5
y^{''}+25y=24sin(t)
y
′
′
+
2
5
y
=
2
4
sin
(
t
)
y^{''}-4y^'=1-2e^{3x}
y
′
′
−
4
y
′
=
1
−
2
e
3
x
y^{''}+4y^'=cos(2x)
y
′
′
+
4
y
′
=
cos
(
2
x
)
y^{''}+y^'+y=x+cos(x)
y
′
′
+
y
′
+
y
=
x
+
cos
(
x
)
2y^{''}-5y^'+2y=5x^4cosh(x)
2
y
′
′
−
5
y
′
+
2
y
=
5
x
4
cosh
(
x
)
y^{''''}-y=14t+cos(t)
y
′
′
′
′
−
y
=
1
4
t
+
cos
(
t
)
y^{''}+y=-x^{-2}sin(x)+2x^{-1}cos(x)
y
′
′
+
y
=
−
x
−
2
sin
(
x
)
+
2
x
−
1
cos
(
x
)
y^{''}+y=sin(x)sin(2x)
y
′
′
+
y
=
sin
(
x
)
sin
(
2
x
)
y^{''}-3y=e^{2x}sin(5x)
y
′
′
−
3
y
=
e
2
x
sin
(
5
x
)
y^{''}+2y^'+10y=17sin(x)-37sin(3x)
y
′
′
+
2
y
′
+
1
0
y
=
1
7
sin
(
x
)
−
3
7
sin
(
3
x
)
y^{''}+5y+6y=10sin(x),y(0)=1,y^'(0)=-4
y
′
′
+
5
y
+
6
y
=
1
0
sin
(
x
)
,
y
(
0
)
=
1
,
y
′
(
0
)
=
−
4
y^{''}-3y^'+2y=4e^{et},y(0)=-3,y^'(0)=5
y
′
′
−
3
y
′
+
2
y
=
4
e
et
,
y
(
0
)
=
−
3
,
y
′
(
0
)
=
5
y^{''}+8y=2t^4,y(0)=0,y^'(0)=0
y
′
′
+
8
y
=
2
t
4
,
y
(
0
)
=
0
,
y
′
(
0
)
=
0
y^{''}-4y^'+4y=x^{-1}e^{2x}
y
′
′
−
4
y
′
+
4
y
=
x
−
1
e
2
x
16y^{''}-24y^'+9y=5-3x
1
6
y
′
′
−
2
4
y
′
+
9
y
=
5
−
3
x
y^{''}+4y^'+4y=e^{-2x}*x^{-2}
y
′
′
+
4
y
′
+
4
y
=
e
−
2
x
·
x
−
2
y^{''}+4y^'+40y=50sin(6t)
y
′
′
+
4
y
′
+
4
0
y
=
5
0
sin
(
6
t
)
y^{''}-4y+3y=2x+1
y
′
′
−
4
y
+
3
y
=
2
x
+
1
y^{''}+4y=sin(3t),y(0)=0,y^'(0)=0
y
′
′
+
4
y
=
sin
(
3
t
)
,
y
(
0
)
=
0
,
y
′
(
0
)
=
0
y^{''}+6y^'-7y=e^{-x}
y
′
′
+
6
y
′
−
7
y
=
e
−
x
y^{''}+2y^'+2y=e^{-x}
y
′
′
+
2
y
′
+
2
y
=
e
−
x
f(x)+f^'(x)+f^{''}(x)=x^5+64
f
(
x
)
+
f
′
(
x
)
+
f
′
′
(
x
)
=
x
5
+
6
4
y^{''''}+9y^{''}=sin(3t)+te^{4t}+4
y
′
′
′
′
+
9
y
′
′
=
sin
(
3
t
)
+
te
4
t
+
4
(d^2y)/(dx^2)-(dy)/(dx)-2y=4x^2
d
2
y
dx
2
−
dy
dx
−
2
y
=
4
x
2
y^{'''}-4y^'=x+3cos(x)
y
′
′
′
−
4
y
′
=
x
+
3
cos
(
x
)
y^{''}-4y^'+y=sin(x)
y
′
′
−
4
y
′
+
y
=
sin
(
x
)
y^{''}+8y^'+16y=2sin(4x)
y
′
′
+
8
y
′
+
1
6
y
=
2
sin
(
4
x
)
y^{''}+4y^'+4= 1/(x^2e^{2x)}
y
′
′
+
4
y
′
+
4
=
1
x
2
e
2
x
y^{''}-y=4e^t-2e^{-t},y(0)=1,y^'(0)=4
y
′
′
−
y
=
4
e
t
−
2
e
−
t
,
y
(
0
)
=
1
,
y
′
(
0
)
=
4
(D^4-1)y=x
(
D
4
−
1
)
y
=
x
y^{''}+4y=tan^2(2x)
y
′
′
+
4
y
=
tan
2
(
2
x
)
y^{''}-4y=e-2x
y
′
′
−
4
y
=
e
−
2
x
y^{''}+y^'-2y=x+sin(2x),y^'(0)=0,y(0)=1
y
′
′
+
y
′
−
2
y
=
x
+
sin
(
2
x
)
,
y
′
(
0
)
=
0
,
y
(
0
)
=
1
y^{''}-3y^'+2y=x^2+8x+9
y
′
′
−
3
y
′
+
2
y
=
x
2
+
8
x
+
9
(D^4-8D^2+16)(y)=xe^{2x}
(
D
4
−
8
D
2
+
1
6
)
(
y
)
=
xe
2
x
(d^2)/(dt^2)(θ(t))+4θ(t)=cos^2(2t)
d
2
dt
2
(
θ
(
t
)
)
+
4
θ
(
t
)
=
cos
2
(
2
t
)
(d^3y)/(dx^3)-12((dy)/(dx))+16y=32x-8
d
3
y
dx
3
−
1
2
(
dy
dx
)
+
1
6
y
=
3
2
x
−
8
y^{''}+y^'-6y=30-30\H(t-4)
y
′
′
+
y
′
−
6
y
=
3
0
−
3
0
H
(
t
−
4
)
y^{''}+10y^'+16y=3cos(5t)+4sin(5t)
y
′
′
+
1
0
y
′
+
1
6
y
=
3
cos
(
5
t
)
+
4
sin
(
5
t
)
2y^{''}+2y=2cos^2(x)
2
y
′
′
+
2
y
=
2
cos
2
(
x
)
y^{''}+4y^'+5y=35e^{-4x},y(0)=-2
y
′
′
+
4
y
′
+
5
y
=
3
5
e
−
4
x
,
y
(
0
)
=
−
2
y^{''}+y=4x*cos(x)
y
′
′
+
y
=
4
x
·
cos
(
x
)
y^{''}+4y^'+3y=e^{-x}sin(x)+xe^{3x}
y
′
′
+
4
y
′
+
3
y
=
e
−
x
sin
(
x
)
+
xe
3
x
y^{''}-2y^'=1,y(0)=2,y^'(0)=1
y
′
′
−
2
y
′
=
1
,
y
(
0
)
=
2
,
y
′
(
0
)
=
1
y^{''}-y^'+14y=5+e^{x/2}
y
′
′
−
y
′
+
1
4
y
=
5
+
e
x
2
y^{''}-16y=9.6e^{4x}+30e^x
y
′
′
−
1
6
y
=
9
.
6
e
4
x
+
3
0
e
x
y^{''}-y=3e^{2x}
y
′
′
−
y
=
3
e
2
x
y^{''}+y^'+y=13e^{-2t}(cos(t)+2sin(t))
y
′
′
+
y
′
+
y
=
1
3
e
−
2
t
(
cos
(
t
)
+
2
sin
(
t
)
)
y^{'''}+6y=7y^'+4e^x
y
′
′
′
+
6
y
=
7
y
′
+
4
e
x
y^{''}+y-12=0
y
′
′
+
y
−
1
2
=
0
x^{''}-3x^'+2x=20sin(2t)
x
′
′
−
3
x
′
+
2
x
=
2
0
sin
(
2
t
)
y^{''}-12y^'+36y=8e^{6x}
y
′
′
−
1
2
y
′
+
3
6
y
=
8
e
6
x
x^{''}-5x^'+6x=12,x(0)=2,x^'(0)=0
x
′
′
−
5
x
′
+
6
x
=
1
2
,
x
(
0
)
=
2
,
x
′
(
0
)
=
0
y^{''}+2y^'+y=4e^x
y
′
′
+
2
y
′
+
y
=
4
e
x
y^{''}-2y^'+y=e^{t-1},y(1)=0,y^'(1)=5
y
′
′
−
2
y
′
+
y
=
e
t
−
1
,
y
(
1
)
=
0
,
y
′
(
1
)
=
5
y^{''}-y^'=xe^{2x}
y
′
′
−
y
′
=
xe
2
x
1
..
2353
2354
2355
2356
2357
..
2459