프로로 업그레이드
사이트 계속하기
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
솔루션
적분 계산기
도함수 계산기
대수 계산기
행렬 계산기
더...
그래프 작성
선 그래프
지수 그래프
이차 그래프
사인 그래프
더...
계산기
BMI 계산기
복리 계산기
백분율 계산기
가속도 계산기
더...
기하학
피타고라스 정리 계산기
원 면적 계산기
이등변삼각형 계산기
삼각형 계산기
더...
도구
메모
무리
치트 시트
워크시트
학습 가이드
실행
솔루션 확인
ko
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
개선하다
일반적인 문제
토픽
사전 대수
대수학
단어 문제
Functions & Graphing
기하학
삼각법
프리 미적분학
미적분학
통계
일반적인 미적분학 문제
y^{''}+4y=-8sin(2t)
y
′
′
+
4
y
=
−
8
sin
(
2
t
)
y^{''}-2y^'+2y=e^2x(cos(x)-9sin(x))
y
′
′
−
2
y
′
+
2
y
=
e
2
x
(
cos
(
x
)
−
9
sin
(
x
)
)
(d^2y)/(dt^2)-2(dy)/(dt)+y=5e^t
d
2
y
dt
2
−
2
dy
dt
+
y
=
5
e
t
y^{''}-xe^{-x}=2y^'
y
′
′
−
xe
−
x
=
2
y
′
y^{''}+4y=3,2sin(4t)y(0)=1
y
′
′
+
4
y
=
3
,
2
sin
(
4
t
)
y
(
0
)
=
1
y^{''}-y^'-6y=xe^x
y
′
′
−
y
′
−
6
y
=
xe
x
x^{''}+4x=-t^2
x
′
′
+
4
x
=
−
t
2
y^{''}+y=5sec^3(x)
y
′
′
+
y
=
5
sec
3
(
x
)
4y^{''}-16y=4x
4
y
′
′
−
1
6
y
=
4
x
x^{''}+2x=2t+26
x
′
′
+
2
x
=
2
t
+
2
6
y^{''}+2y^'+y=xe^x
y
′
′
+
2
y
′
+
y
=
xe
x
y^{''}-14y^'+49y=e^{7t}ln(t)
y
′
′
−
1
4
y
′
+
4
9
y
=
e
7
t
ln
(
t
)
y^{''}+2y= 1/(cos(sqrt(2x)))
y
′
′
+
2
y
=
1
cos
(
√
2
x
)
y^{''}+y^'-2y=2+2x+2x^2
y
′
′
+
y
′
−
2
y
=
2
+
2
x
+
2
x
2
y^{'''}+2y^{''}=e^x
y
′
′
′
+
2
y
′
′
=
e
x
y^{''}-3y=-48x^2e^{3x}
y
′
′
−
3
y
=
−
4
8
x
2
e
3
x
y^{''}+16y=3cos(4t)
y
′
′
+
1
6
y
=
3
cos
(
4
t
)
y^{''}-4y^'+5y=cos^2(x)
y
′
′
−
4
y
′
+
5
y
=
cos
2
(
x
)
2y^{''}-6y=2x^2-x^2-x+3
2
y
′
′
−
6
y
=
2
x
2
−
x
2
−
x
+
3
y^{''}-12y^'+32y=4cos(3t)
y
′
′
−
1
2
y
′
+
3
2
y
=
4
cos
(
3
t
)
y^{''}-2y^'+y=4e^{3x}
y
′
′
−
2
y
′
+
y
=
4
e
3
x
y^{''}-4y^'+20y=2sin(3t)
y
′
′
−
4
y
′
+
2
0
y
=
2
sin
(
3
t
)
y^{''}+4y=cos(4x)+2sin(4x)
y
′
′
+
4
y
=
cos
(
4
x
)
+
2
sin
(
4
x
)
2(d^2y)/(dx^2)+(dy)/(dx)+3y=e^{2x}
2
d
2
y
dx
2
+
dy
dx
+
3
y
=
e
2
x
y^{'''}-y^{''}-y^'+y=5e^{-t}+2
y
′
′
′
−
y
′
′
−
y
′
+
y
=
5
e
−
t
+
2
y^{'''}-y^{''}-y^'+y=5e^{-t}+4
y
′
′
′
−
y
′
′
−
y
′
+
y
=
5
e
−
t
+
4
y^{'''}-y^{''}-y^'+y=5e^{-t}+6
y
′
′
′
−
y
′
′
−
y
′
+
y
=
5
e
−
t
+
6
y^{''}+7y^'+6y=6cos(5t+1.5708)\H(t)
y
′
′
+
7
y
′
+
6
y
=
6
cos
(
5
t
+
1
.
5
7
0
8
)
H
(
t
)
y^{''}-y^'-2y=sin(3t),y(0)=1,y(0)=-1
y
′
′
−
y
′
−
2
y
=
sin
(
3
t
)
,
y
(
0
)
=
1
,
y
(
0
)
=
−
1
y^{''}+6y^'+9y=t^2*e^{-3t}
y
′
′
+
6
y
′
+
9
y
=
t
2
·
e
−
3
t
3y^{''}+75y=10cos(5t)
3
y
′
′
+
7
5
y
=
1
0
cos
(
5
t
)
y^{''''}-y=8e^x
y
′
′
′
′
−
y
=
8
e
x
(D^2+9)y=cos(2x)
(
D
2
+
9
)
y
=
cos
(
2
x
)
y^{''}+y=t,y(0)=4,y(0)=0,y^'(0)=0
y
′
′
+
y
=
t
,
y
(
0
)
=
4
,
y
(
0
)
=
0
,
y
′
(
0
)
=
0
y^{''}+3y^'-2y=2t^2+4t+4
y
′
′
+
3
y
′
−
2
y
=
2
t
2
+
4
t
+
4
y^{''}+4y^'+4y=t^2-2t
y
′
′
+
4
y
′
+
4
y
=
t
2
−
2
t
y^{''}-y^'-6y=-2tsin(t)
y
′
′
−
y
′
−
6
y
=
−
2
t
sin
(
t
)
y^{''}-y=x+sin(x)
y
′
′
−
y
=
x
+
sin
(
x
)
y^{''}+2y=-e^3+e^{2x}
y
′
′
+
2
y
=
−
e
3
+
e
2
x
y^{''}-25y=xe^x
y
′
′
−
2
5
y
=
xe
x
y^{''}+4y^'+4y=8x
y
′
′
+
4
y
′
+
4
y
=
8
x
y^{''}+4y^'+3y=sin(e^x)
y
′
′
+
4
y
′
+
3
y
=
sin
(
e
x
)
y^{''}-y^'-6y=-e^x+12x,y^'(0)=-2,y(0)=1
y
′
′
−
y
′
−
6
y
=
−
e
x
+
1
2
x
,
y
′
(
0
)
=
−
2
,
y
(
0
)
=
1
2x^{''}+5x^'+2x=4e^{-2t}-t
2
x
′
′
+
5
x
′
+
2
x
=
4
e
−
2
t
−
t
y^{''}-9y=(9t)/(e^{3t)}
y
′
′
−
9
y
=
9
t
e
3
t
(d^2x)/(dt^2)-3(dx)/(dt)+12x=9t
d
2
x
dt
2
−
3
dx
dt
+
1
2
x
=
9
t
y^{''}+y^'+5y=2x
y
′
′
+
y
′
+
5
y
=
2
x
y^{''}-4y^'+13y=e^{2t}*sin(3t),y(0)=4
y
′
′
−
4
y
′
+
1
3
y
=
e
2
t
·
sin
(
3
t
)
,
y
(
0
)
=
4
y^{''}+y^'=e^x+3x
y
′
′
+
y
′
=
e
x
+
3
x
선의 y^{''}+4y=x^2+5cos(x)
linear
y
′
′
+
4
y
=
x
2
+
5
cos
(
x
)
y^{''}-y^'-6y=sin(x)
y
′
′
−
y
′
−
6
y
=
sin
(
x
)
y^{'''}-2y^{''}+y^'=sin(2x)+x
y
′
′
′
−
2
y
′
′
+
y
′
=
sin
(
2
x
)
+
x
y^{''}-6y=6
y
′
′
−
6
y
=
6
y^{''}-2y^'+17y=excos(4x)
y
′
′
−
2
y
′
+
1
7
y
=
ex
cos
(
4
x
)
y^{''}+2y^'+y=4e^x+4e^{-x}
y
′
′
+
2
y
′
+
y
=
4
e
x
+
4
e
−
x
y^{''}-8y^'+20y=10xe^x
y
′
′
−
8
y
′
+
2
0
y
=
1
0
xe
x
7y^{''}+7y^'+2y=16+9x+x^2
7
y
′
′
+
7
y
′
+
2
y
=
1
6
+
9
x
+
x
2
y^{''}+y=-8xcos^2(x)
y
′
′
+
y
=
−
8
x
cos
2
(
x
)
y^{''}+2y^'+5y=-5te^{-t}cos(2t)
y
′
′
+
2
y
′
+
5
y
=
−
5
te
−
t
cos
(
2
t
)
2y^{''}+3y^'-2y=18x^2-4x-15
2
y
′
′
+
3
y
′
−
2
y
=
1
8
x
2
−
4
x
−
1
5
x^{''}+x^'=sin(t)
x
′
′
+
x
′
=
sin
(
t
)
y^{''}+4y^'+4y=(5+x)e-2x
y
′
′
+
4
y
′
+
4
y
=
(
5
+
x
)
e
−
2
x
y^{'''}-3y^'+2y=8e^{2x}
y
′
′
′
−
3
y
′
+
2
y
=
8
e
2
x
y^{''}-4y^'=8xe^{3x}
y
′
′
−
4
y
′
=
8
xe
3
x
y^{''}-6y^'+9y=4e^x
y
′
′
−
6
y
′
+
9
y
=
4
e
x
y^{''}-4y^'+7y=te^t
y
′
′
−
4
y
′
+
7
y
=
te
t
y^{''}+9y=sin(2x),y(0)=0,y^'(0)=0
y
′
′
+
9
y
=
sin
(
2
x
)
,
y
(
0
)
=
0
,
y
′
(
0
)
=
0
y^{''}+4y=8sin(2x)+5e^x
y
′
′
+
4
y
=
8
sin
(
2
x
)
+
5
e
x
y^{''}-y^'-6y=-e^x+12x,y(0)=1,y^'(0)=-2
y
′
′
−
y
′
−
6
y
=
−
e
x
+
1
2
x
,
y
(
0
)
=
1
,
y
′
(
0
)
=
−
2
y^{''}+25y=82e^{4x}
y
′
′
+
2
5
y
=
8
2
e
4
x
y^{''}-4y^'+4y=-3e^{2x}+(e^{2x})/x
y
′
′
−
4
y
′
+
4
y
=
−
3
e
2
x
+
e
2
x
x
y^{''}+8y^'+12y=1-\H(t-3)
y
′
′
+
8
y
′
+
1
2
y
=
1
−
H
(
t
−
3
)
y^{''}-6y^'+9y=2,y^'(0)=6
y
′
′
−
6
y
′
+
9
y
=
2
,
y
′
(
0
)
=
6
y^{''}-2y^'-15y=-37t+30t^2
y
′
′
−
2
y
′
−
1
5
y
=
−
3
7
t
+
3
0
t
2
y^{''}-y^'-6y=4cos(3x)
y
′
′
−
y
′
−
6
y
=
4
cos
(
3
x
)
y^{'''}+3y^{''}-4y^'-12y=4cos(x)
y
′
′
′
+
3
y
′
′
−
4
y
′
−
1
2
y
=
4
cos
(
x
)
y^{'''}-ay^'=1+cosh(ax)
y
′
′
′
−
ay
′
=
1
+
cosh
(
ax
)
y^{''}+5y^'+8y=24+23x+12x^2
y
′
′
+
5
y
′
+
8
y
=
2
4
+
2
3
x
+
1
2
x
2
4y^{''}-y=1,y^'(0)= 1/2
4
y
′
′
−
y
=
1
,
y
′
(
0
)
=
1
2
y^{''}-2y^'+y=e^x 1/(x^2+1)
y
′
′
−
2
y
′
+
y
=
e
x
1
x
2
+
1
y^{''}-6y^'+9y=e^{3x}ln(x^2+1)
y
′
′
−
6
y
′
+
9
y
=
e
3
x
ln
(
x
2
+
1
)
y^{''}-6y^'+9y=t^2e^3
y
′
′
−
6
y
′
+
9
y
=
t
2
e
3
y^{''}-2y^'+y=2x+x^2+sin(3x)
y
′
′
−
2
y
′
+
y
=
2
x
+
x
2
+
sin
(
3
x
)
y^{''}+4y=cos(2t),y(0)=0,y^'(0)=0
y
′
′
+
4
y
=
cos
(
2
t
)
,
y
(
0
)
=
0
,
y
′
(
0
)
=
0
y^{''}+y^'+5y=4e^{-t}cos(2t)
y
′
′
+
y
′
+
5
y
=
4
e
−
t
cos
(
2
t
)
y^{''}-5y^'+4y=e^{2t}
y
′
′
−
5
y
′
+
4
y
=
e
2
t
y^{''}+6y^'+8y=19te^{2t}
y
′
′
+
6
y
′
+
8
y
=
1
9
te
2
t
y^{''}-6y^'+8y=4e^{4x}
y
′
′
−
6
y
′
+
8
y
=
4
e
4
x
y^{''}-y=10sin^2(x)
y
′
′
−
y
=
1
0
sin
2
(
x
)
y^{'''}-y^{''}=6
y
′
′
′
−
y
′
′
=
6
y^{''}+2y^'-3y=t,y(0)=2,y^'(0)=1
y
′
′
+
2
y
′
−
3
y
=
t
,
y
(
0
)
=
2
,
y
′
(
0
)
=
1
y^{''}+4y=3sin(x)+3cos(x)
y
′
′
+
4
y
=
3
sin
(
x
)
+
3
cos
(
x
)
y^{''}-2y^'=8
y
′
′
−
2
y
′
=
8
y^{''}-2y^'=1
y
′
′
−
2
y
′
=
1
y^{''}-2y^'=4
y
′
′
−
2
y
′
=
4
y^{''}+4y=tsin(2t)
y
′
′
+
4
y
=
t
sin
(
2
t
)
y^{''}+4y^'+3y=e^{3x}
y
′
′
+
4
y
′
+
3
y
=
e
3
x
solvefor d,d(p)=480-3p
solvefor
d
,
d
(
p
)
=
4
8
0
−
3
p
y^{''}+4y=3*sin(2x)
y
′
′
+
4
y
=
3
·
sin
(
2
x
)
y^{''}-y=5x+2
y
′
′
−
y
=
5
x
+
2
1
..
2354
2355
2356
2357
2358
..
2459